Prof. Dr. Alfred Toth

Horizontale und vertikale Dualität bei Zahlenfeld-Graphen

- 1. Basierend auf der Einführung von Zahlenfeld-Graphen (Toth 2015) wird innerhalb der arithmetischen Basis sowohl der Ontik als auch der Semiotik neben der aus der Semiotik bekannten horizontalen Dualitätsoperation (×) die vertikale Dualitätsoperation (—) eingeführt.
- 2. Der Zahlenfeld-Graph 2.1., der die folgenden Paare semiotischer Dualsysteme repräsentiert

DS 9 =
$$(3.1, 2.3, 1.3) \times (3.1, 3.2, 1.3)$$

DS 19 =
$$(3.3, 2.1, 1.1) \times (1.1, 1.2, 3.3)$$

$$\emptyset$$
 \emptyset 2 2 \emptyset \emptyset 2 \emptyset 2

$$\emptyset$$
 \emptyset 1 \leftrightarrows 1 \emptyset \emptyset = 1 \emptyset 1

und der Zahlenfeld-Graph 2.8., der das folgende semiotische Dualsystem repräsentiert

DS 14 =
$$(3.2, 2.2, 1.2) \times (2.1, 2.2, 2.3)$$

$$\emptyset$$
 0 \emptyset ,

stehen in in horizontaler Dualitätsrelation zueinander.

2.1. 2.8.

$$2 \quad \emptyset \quad 2 \qquad \qquad \emptyset \quad 2 \quad \emptyset$$

3. Der Zahlenfeld-Graph 2.2., der die folgenden Paare semiotischer Dualsysteme repräsentiert

DS 2 =
$$(3.1, 2.1, 1.2) \times (2.1, 1.2, 1.3)$$

DS 26 =
$$(3.3, 2.3, 1.2) \times (2.1, 3.2, 3.3)$$

und und der Zahlenfeld-Graph 2.5., der die folgenden Paare semiotischer Dualsysteme repräsentiert

DS 10 =
$$(3.2, 2.1, 1.1) \times (1.1, 1.2, 2.3)$$

DS 18 = $(3.2, 2.3, 1.3) \times (3.1, 3.2, 2.3)$
2 Ø Ø Ø 2 2 Ø 2
1 Ø Ø \leftrightarrows Ø Ø 1 = 1 Ø 1
Ø 0 Ø Ø 0 Ø Ø 0 Ø 0 Ø
DS 12 = $(3.2, 2.1, 1.3) \times (3.1, 1.2, 2.3)$
DS 16 = $(3.2, 2.3, 1.1) \times (1.1, 3.2, 2.3)$
Ø Ø 2 2 Ø Ø 2
1 Ø Ø \leftrightarrows Ø Ø 1 = 1 Ø 1
Ø 0 Ø Ø Ø Ø Ø Ø Ø Ø Ø

stehen in der Relation vertikaler Dualität zueinander.

4. Der Zahlenfeld-Graph 2.3., der die folgenden Paare semiotischer Dualsysteme repräsentiert

DS 4 =
$$(3.1, 2.2, 1.1) \times (1.1, 2.2, 1.3)$$

DS 24 = $(3.3, 2.2, 1.3) \times (3.1, 2.2, 3.3)$
2 Ø Ø Ø 2 2 Ø 2
Ø 1 Ø \rightleftharpoons Ø 1 Ø = Ø 1 Ø
0 Ø Ø Ø 0 0 Ø Ø 0
DS 6 = $(3.1, 2.2, 1.3) \times (3.1, 2.2, 1.3)$
DS 22 = $(3.3, 2.2, 1.1) \times (1.1, 2.2, 3.3)$
Ø Ø 2 2 Ø Ø 2 Ø 2
Ø 1 Ø Ø 1 Ø = Ø 1 Ø
0 Ø Ø Ø Ø 0 0 Ø 0

und der Zahlenfeld-Graph 2.6., der die folgenden Paare semiotischer Dualsysteme repräsentiert

DS 11 =
$$(3.2, 2.1, 1.2) \times (2.1, 1.2, 2.3)$$

DS 17 = $(3.2, 2.3, 1.2) \times (2.1, 3.2, 2.3)$

stehen in der Relation vertikaler Dualität zueinander.

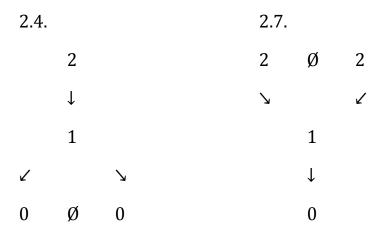
- 2.3. 2.6. 2 Ø 2
- 2 Ø 2 2 \ \(\sqrt{2} \) \(\sqrt{2}
- 0 Ø 0

5. Der Zahlenfeld-Graph 2.4., der die folgenden Paare semiotischer Dualsysteme repräsentiert

DS 5 =
$$(3.1, 2.2, 1.2) \times (2.1, 2.2, 1.3)$$

DS 23 =
$$(3.3, 2.2, 1.2) \times (2.1, 2.2, 3.3)$$

$$\emptyset$$
 2 \emptyset \emptyset 2 \emptyset \emptyset 2 \emptyset


$$\emptyset \quad 1 \quad \emptyset \quad \leftrightarrows \quad \emptyset \quad 1 \quad \emptyset \quad = \quad \emptyset \quad 1 \quad \emptyset$$
 $0 \quad \emptyset \quad \emptyset \quad \emptyset \quad \emptyset \quad 0 \quad 0 \quad \emptyset \quad 0$

und der Zahlenfeld-Graph 2.7., der die folgenden Paare semiotischer Dualsysteme repräsentiert

DS 13 =
$$(3.2, 2.2, 1.1) \times (1.1, 2.2, 2.3)$$

DS 15 =
$$(3.2, 2.2, 1.3) \times (3.1, 2.2, 2.3)$$

stehen in der Relation vertikaler Dualität zueinander

Es gibt somit unter den 7 Zahlenfeld-Graphen, auf die sich die 27 semiotischen Relationen des semiotischen Gesamt-Dualitätssystems abbilden lassen, nur einen Fall von horizontaler Dualität, der sechs Fällen von vertikaler Dualität gegenüber steht.

Literatur

Toth, Alfred, Zahlenfeld-Graphen. In: Electronic Journal for Mathematical Semiotics, 2015

6.5.2015